翻訳と辞書
Words near each other
・ Lighthouse Family
・ Lighthouse Family discography
・ Lighthouse Festival Theatre
・ Lighthouse Field State Beach
・ Lighthouse Foundation for Sri Lanka
・ Lighthouse Furniture
・ Lighthouse Hill
・ Lighthouse Hill (film)
・ Lighthouse Hill, Staten Island
・ Lighthouse in Hel
・ Lighthouse in Krynica Morska
・ Lighthouse Inn
・ Lighthouse Inn (New London, Connecticut)
・ Lighthouse Interactive
・ Lighthouse International
Light-dependent reactions
・ Light-dragging effects
・ Light-emitting diode
・ Light-emitting electrochemical cell
・ Light-field camera
・ Light-Foot
・ Light-front computational methods
・ Light-front quantization applications
・ Light-gas gun
・ Light-gated ion channel
・ Light-harvesting complex
・ Light-harvesting complexes of green plants
・ Light-Hearted Isabel
・ Light-in-flight imaging
・ Light-independent reactions


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Light-dependent reactions : ウィキペディア英語版
Light-dependent reactions

In photosynthesis, the light-dependent reactions take place on the thylakoid membranes. The inside of the thylakoid membrane is called the lumen, and outside the thylakoid membrane is the stroma, where the light-independent reactions take place. The thylakoid membrane contains some integral membrane protein complexes that catalyze the light reactions. There are four major protein complexes in the thylakoid membrane: Photosystem II (PSII), Cytochrome b6f complex, Photosystem I (PSI), and ATP synthase. These four complexes work together to ultimately create the products ATP and NADPH.
The two photosystems absorb light energy through pigments - primarily the chlorophylls, which are responsible for the green color of leaves. The light-dependent reactions begin in photosystem II. When a chlorophyll ''a'' molecule within the reaction center of PSII absorbs a photon, an electron in this molecule attains a higher energy level. Because this state of an electron is very unstable, the electron is transferred from one to another molecule creating a chain of redox reactions, called an electron transport chain (ETC). The electron flow goes from PSII to cytochrome b6f to PSI. In PSI, the electron gets the energy from another photon. The final electron acceptor is NADP. In oxygenic photosynthesis, the first electron donor is water, creating oxygen as a waste product. In anoxygenic photosynthesis various electron donors are used.
Cytochrome b6f and ATP synthase work together to create ATP. This process is called photophosphorylation, which occurs in two different ways. In non-cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from PSII to pump protons from the stroma to the lumen. The proton gradient across the thylakoid membrane creates a proton-motive force, used by ATP synthase to form ATP. In cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from not only PSII but also PSI to create more ATP and to stop the production of NADPH. Cyclic phosphorylation is important to create ATP and maintain NADPH in the right proportion for the light-independent reactions.
The net-reaction of all light-dependent reactions in oxygenic photosynthesis is:
2 + 2 + 3ADP + 3Pi → + 2NADPH + 3ATP
The two photosystems are protein complexes that absorb photons and are able to use this energy to create an electron transport chain. Photosystem I and II are very similar in structure and function. They use special proteins, called light-harvesting complexes, to absorb the photons with very high effectiveness. If a special pigment molecule in a photosynthetic reaction center absorbs a photon, an electron in this pigment attains the excited state and then is transferred to another molecule in the reaction center. This reaction, called photoinduced charge separation, is the start of the electron flow and is unique because it transforms light energy into chemical forms.
==The reaction center==

(詳細はdimer of chlorophyll pigment molecules near the periplasmic (or thylakoid lumen) side of the membrane. This dimer is called a special pair because of its fundamental role in photosynthesis. This special pair is slightly different in PSI and PSII reaction center. In PSII, it absorbs photons with a wavelength of 680 nm, and it is therefore called P680. In PSI, it absorbs photons at 700 nm, and it is called P700. In bacteria, the special pair is called P760, P840, P870, or P960.
If an electron of the special pair in the reaction center becomes excited, it cannot transfer this energy to another pigment using resonance energy transfer. In normal circumstances, the electron should return to the ground state, but, because the reaction center is arranged so that a suitable electron acceptor is nearby, the excited electron can move from the initial molecule to the acceptor. This process results in the formation of a positive charge on the special pair (due to the loss of an electron) and a negative charge on the acceptor and is, hence, referred to as photoinduced charge separation. In other words, electrons in pigment molecules can exist at specific energy levels. Under normal circumstances, they exist at the lowest possible energy level they can. However, if there is enough energy to move them into the next energy level, they can absorb that energy and occupy that higher energy level. The light they absorb contains the necessary amount of energy needed to push them into the next level. Any light that does not have enough or has too much energy cannot be absorbed and is reflected. The electron in the higher energy level, however, does not want to be there; the electron is unstable and must return to its normal lower energy level. To do this, it must release the energy that has put it into the higher energy state to begin with. This can happen various ways. The extra energy can be converted into molecular motion and lost as heat. Some of the extra energy can be lost as heat energy, while the rest is lost as light. This re-emission of light energy is called fluorescence. The energy, but not the e- itself, can be passed onto another molecule. This is called resonance. The energy and the e- can be transferred to another molecule. Plant pigments usually utilize the last two of these reactions to convert the sun's energy into their own.
This initial charge separation occurs in less than 10 picoseconds (10−11 seconds). In their high-energy states, the special pigment and the acceptor could undergo charge recombination; that is, the electron on the acceptor could move back to neutralize the positive charge on the special pair. Its return to the special pair would waste a valuable high-energy electron and simply convert the absorbed light energy into heat. In the case of PSII, this backflow of electrons can produce reactive oxygen species leading to photoinhibition. Three factors in the structure of the reaction center work together to suppress charge recombination nearly completely.
* Another electron acceptor is less than 10 Å away from the first acceptor, and so the electron is rapidly transferred farther away from the special pair.
* An electron donor is less than 10 Å away from the special pair, and so the positive charge is neutralized by the transfer of another electron
* The electron transfer back from the electron acceptor to the positively charged special pair is especially slow. The rate of an of electron transfer reaction increases with its thermodynamic favorability up to a point and then decreases. The back transfer is so favourable that it takes place in the inverted region where electron-transfer rates become slower.〔
Thus, electron transfer proceeds efficiently from the first electron acceptor to the next, creating an electron transport chain that ends if it has reached NADPH.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Light-dependent reactions」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.